Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Methods Mol Biol ; 2788: 3-18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656505

RESUMEN

Carotenoids are the natural pigments available in nature and exhibit different colors such as yellow, red, and orange. These are a class of phytonutrients that have anti-cancer, anti-inflammatory, anti-oxidant, immune-modulatory, and anti-aging properties. These were used in food, pharmaceutical, nutraceutical, and cosmetic industries. They are divided into two classes: carotenes and xanthophylls. The carotenes are non-oxygenated derivatives and xanthophylls are oxygenated derivatives. The major source of carotenoids are vegetables, fruits, and tissues. Carotenoids also perform the roles of photoprotection and photosynthesis. In addition to the roles mentioned above, they are also involved and act as precursor molecules for the biosynthesis of phytohormones such as strigolactone and abscisic acid. This chapter briefly introduces carotenoids and their extraction method from plant tissue. Proposed protocol describes the extraction of carotenoid using solvents chloroform and dichloromethane. Reverse-phase HPLC can be performed with C30 columns using gradient elution. The column C30 is preferred to the C18 column because the C30 column has salient features, which include selective nature in the separation of structural isomers and hydrophobic, long-chain compounds, and shows the best compatibility with highly aqueous mobile phases. A complete pipeline for the extraction of carotenoids from plant tissue is given in the present protocol.


Asunto(s)
Carotenoides , Carotenoides/aislamiento & purificación , Carotenoides/química , Carotenoides/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Plantas/química , Plantas/metabolismo , Extractos Vegetales/química
2.
Methods Mol Biol ; 2788: 19-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656506

RESUMEN

Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Plantas , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Plantas/metabolismo , Plantas/química , Metaboloma , Extractos Vegetales/química , Extractos Vegetales/análisis
3.
Front Genet ; 12: 637141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889179

RESUMEN

In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.

4.
Cells ; 10(2)2021 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562333

RESUMEN

The majority of the most economically important plant and crop species are enriched with the availability of high-quality reference genome sequences forming the basis of gene discovery which control the important biochemical pathways. The transcriptomics and proteomics resources have also been made available for many of these plant species that intensify the understanding at expression levels. However, still we lack integrated studies spanning genomics-transcriptomics-proteomics, connected to metabolomics, the most complicated phase in phenotype expression. Nevertheless, for the past few decades, emphasis has been more on metabolome which plays a crucial role in defining the phenotype (trait) during crop improvement. The emergence of modern high throughput metabolome analyzing platforms have accelerated the discovery of a wide variety of biochemical types of metabolites and new pathways, also helped in improving the understanding of known existing pathways. Pinpointing the causal gene(s) and elucidation of metabolic pathways are very important for development of improved lines with high precision in crop breeding. Along with other -omics sciences, metabolomics studies have helped in characterization and annotation of a new gene(s) function. Hereby, we summarize several areas in the field of crop development where metabolomics studies have made its remarkable impact. We also assess the recent research on metabolomics, together with other omics, contributing toward genetic engineering to target traits and key pathway(s).


Asunto(s)
Metabolómica , Plantas/metabolismo , Carácter Cuantitativo Heredable , Ingeniería Metabólica , Fitomejoramiento , Plantas/genética , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA